
  

Language Geek 2.0

Remix D



  

3 Goals



  

<1> Share Interesting Tidbits of 
Languages I Enjoy </1>



  

<2> Show That Language 
Effects How You Think </2>



  

<3> Inspire At Least One Of You 
to Learn A New Language </3>



  

Have you ever noticed?



  

Some Languages



  

( Spanish )



  

Sound Fast



  

While Others



  

( Mandarin )



  

Sound Slow?



  

Study



  

English, French, German, 
Italian, Japanese, Mandarin, 
Spanish, and Vietnamese 

(baseline)



  

 read 20 different texts



  

Native language



  

Crunch the numbers



  

2 data points for each



  

(1) average information density
/

syllable



  

(2) average syllables 
/

second



  

Mandarin
density: 0.94
rate: 5.18



  

Mandarin
density: 0.94
rate: 5.18

Japanese
density: 0.49

rate: 7.84



  

Mandarin
density: 0.94
rate: 5.18

Japanese
density: 0.49

rate: 7.84

English
0.91
6.19



  

Something Fascinating



  

Work through the math



  

All languages



  

Same Information Density
/

Second



  

Clearly



  

Shows Threshold of 
Understanding



  

40,000+ Years Of Work



  

Written?



  

Roughly 5000



  

Something Like That



  

Mesopotamia?

Egypt?

Pakistan?



  

Does written language follow 
the same rules?



  

No



  

Information Density



  

( and our ability to understand )



  

Varies SIGNIFICANTLY by 
Language



  

However



  

Written Languages



  

Have Differences



  

Have “Features”



  

Spanish



  

Consistent Rules
Few Grammatical Exceptions



  

Easier to Learn



  

Mandarin



  

Symbolic System



  

Little Drift Over Centuries



  

(Have you read Chaucer!?)



  

Seek the Perfect Language



  

Esperanto



  

 Volapük



  

Interlingua



  

Many More



  

Fast Forward
>>



  

Programming Languages



  

Different Languages



  

Different Advantages



  

So



  

Let's Look



  

What Makes Languages 
Awesome?



  

C



  

#define REG(a) *(volatile uint32_t*)(a)
#define PIO_COR REG(0x5000)



  

C is incredibly low-level



  

Free Access To Everything



  

“Portable Assembly”



  

Good for Manual Optimization



  

What does this do?



  

x = x ^ y
y = x ^ y
x = x ^ y



  

(It swaps two words. 
No extra memory)



  

Efficient!



  

Not Always Readable



  

Rarely Quick to Write



  

You Specify EVERYTHING



  

What CAN you develop in 
quickly?



  

Ruby



  

Primarily a Scripting Language



  

“Principle of Least Surprise”



  

“Duck Typing”



  

Biggest Goal



  

“Make Programming Fun”



  

a = [1, 2, 3, 4, "fish", "stix", 7]
puts a[0], a[-1], a[4..-1].join(' '), a[8]



  

a = [1, 2, 3, 4, "fish", "stix", 7]
puts a[0], a[-1], a[4..-1].join(' '), a[8]

  1
  7
  fish stix 7
  nil



  

Flexible Containers



  

Flexible Array Handling
(nils, negative indexing)



  

Powerful String Handling



  

Ruby is Glue



  

Because, who wants to write 
this in C: 



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes.



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes. Force 
the incoming text to have unix 
line endings



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes. Force 
the incoming text to have unix 
line endings, then write it to a 
file. 



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes. Force 
the incoming text to have unix 
line endings, then write it to a 
file. If there are any problems, 
make sure you close the port 
properly



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes. Force 
the incoming text to have unix 
line endings, then write it to a 
file. If there are any problems, 
make sure you close the port 
properly and make sure you 
close that file handle too. 



  

Because, who wants to write 
this in C: Open a TCP/IP socket 
and read 50,000 bytes. Force 
the incoming text to have unix 
line endings, then write it to a 
file. If there are any problems, 
make sure you close the port 
properly and make sure you 
close that file handle too. Also, 
watch for memory leaks.



  

This is What Ruby is For



  

File.open("log.txt",'w') {|f| f << 
TCPSocket.new("192.1.168.1",3000).recv(50000).gsub(/\r\n/,”\n”)}



  

File.open("log.txt",'w') do |f| 
  f << TCPSocket.new("192.1.168.1",3000)
                 .recv(50_000)
                 .gsub(/\r\n/,”\n”)
end



  

Make You Want to Cry?



  

One More Awesome Thing



  

Everything in Ruby is Dynamic



  

Want to print ints as Roman 
Numerals?



  

Just change FixedNum's .to_s 
method



  

How about creating functions 
from text files?



  

class_eval do
    Dir['scripts/*.meh'].each do |s|
        define_method("run_#{s}") 
{ eval(s) }
    end
end



  

In Ruby, Line Between
Data and Code

Blurred



  

Which Leads Us To



  

Self



  

Pure Object Oriented



  

Prototype



  

With “Slots”



  

Slots can be



  

data



  

methods



  

parent



  

Start by Cloning



  

Change As Needed



  

No Classes or Types



  

Inheritance by Parent Slots



  

Undefined Slots



  

Search up Through Each Parent



  

Until Match



  

Very Flexible



  

Can Set Slot As Data



  

Then Signal a Slot to Run



  

Another Unique Aspect



  

Graphical and Text Interfaces



  

Interchangeable



  



  

Can Execute Directly From 
Diagrams



  

Invented JIT Compilation



  

Later Forked the Become Java



  

MANY Languages Run on JVM



  

Clojure



  

(Think LISP on JVM)



  

(+ 1 1)



  

(+ (* m x) b)



  

(class (/ 1 3))



  

(class (/ 1 3))
clojure.lang.Ratio



  

recursion!
(defn count [v] (if (empty? v) 0 

(inc (count(rest v)))))



  

infinite sequences!
(repeat “hi”)



  

(take 3 (repeat “hi”))



  

Whoa!
Look at that again.



  

(take 3 (repeat “hi”))



  

Lazy Evaluation!



  

Pop quiz!



  

(defn f [n] (apply * 
(take n (iterate inc 1))))

what does this do?



  

(defn f [n] (apply * 
(take n (iterate inc 1))))

it computes n!



  

if that doesn't feel foreign yet



  

Prolog



  

not imperative



  

(it's not a recipe)



  

it's declarative



  

(declares facts and constraints)



  

likes (bryan, skating).
likes (kevin, skating).
likes (kevin, ruby).
likes (mark, ruby).
likes (mark, lua).
likes (dean, tcl).

hangout(X,Y) :- \+(X = Y), likes(X,Z), 
likes(Y,Z).



  

likes (bryan, skating).
likes (kevin, skating).
likes (kevin, ruby).
likes (mark, ruby).
likes (mark, lua).
likes (dean, tcl).

hangout(X,Y) :- \+(X = Y), likes(X,Z), 
likes(Y,Z).

?- likes(bryan, skating).
yes
?- hangout(bryan, kevin).
yes
?- hangout(bryan, mark).
no



  

add some more rules:

category (language, ruby).
category (language, lua).
category (language, tcl).
category (sport, skating).



  

likes_category(X,Y) :- likes(X,Z), 
category(Y,Z).
(like an inner join in SQL)



  

?- likes_category(What, 
language).
What = kevin ;
What = mark ;
What = dean ;



  

pretty crazy huh?



  

What about a language that is 
MEANT TO CRASH!?



  

Erlang



  

“Let it Crash”



  

Hot-Swap Code



  

built-in message-passing &
monitoring processes



  

loop() ->
    process_flag(trap_exit, true),
    receive
        new ->
            register(process, 
spawn_link(fun action:loop/0)),
            loop();
        {'EXIT', From, Reason} ->
            self() ! new,
            loop()
    end.



  

I haven't even talked about



  

I haven't even talked aboutI haven't even talked about



  

I haven't even talked aboutI haven't even talked about

LISP

Scratch
Digital Mars' D

JavaScript

Io

Haskell

DylanPython

Lua

Go



  

whew



  

Clearly



  

There are MANY



  

Fascinating Languages



  

And There is a LOT to LEARN



  

<3> So Get Learning! </3>



  

</Language Geek=“2.0”>
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