

Language Geek 2.0

Remix D

3 Goals

<1> Share Interesting Tidbits of
Languages I Enjoy </1>

<2> Show That Language
Effects How You Think </2>

<3> Inspire At Least One Of You
to Learn A New Language </3>

Have you ever noticed?

Some Languages

(Spanish)

Sound Fast

While Others

(Mandarin)

Sound Slow?

Study

English, French, German,
Italian, Japanese, Mandarin,
Spanish, and Vietnamese

(baseline)

 read 20 different texts

Native language

Crunch the numbers

2 data points for each

(1) average information density
/

syllable

(2) average syllables
/

second

Mandarin
density: 0.94
rate: 5.18

Mandarin
density: 0.94
rate: 5.18

Japanese
density: 0.49

rate: 7.84

Mandarin
density: 0.94
rate: 5.18

Japanese
density: 0.49

rate: 7.84

English
0.91
6.19

Something Fascinating

Work through the math

All languages

Same Information Density
/

Second

Clearly

Shows Threshold of
Understanding

40,000+ Years Of Work

Written?

Roughly 5000

Something Like That

Mesopotamia?

Egypt?

Pakistan?

Does written language follow
the same rules?

No

Information Density

(and our ability to understand)

Varies SIGNIFICANTLY by
Language

However

Written Languages

Have Differences

Have “Features”

Spanish

Consistent Rules
Few Grammatical Exceptions

Easier to Learn

Mandarin

Symbolic System

Little Drift Over Centuries

(Have you read Chaucer!?)

Seek the Perfect Language

Esperanto

 Volapük

Interlingua

Many More

Fast Forward
>>

Programming Languages

Different Languages

Different Advantages

So

Let's Look

What Makes Languages
Awesome?

C

#define REG(a) *(volatile uint32_t*)(a)
#define PIO_COR REG(0x5000)

C is incredibly low-level

Free Access To Everything

“Portable Assembly”

Good for Manual Optimization

What does this do?

x = x ^ y
y = x ^ y
x = x ^ y

(It swaps two words.
No extra memory)

Efficient!

Not Always Readable

Rarely Quick to Write

You Specify EVERYTHING

What CAN you develop in
quickly?

Ruby

Primarily a Scripting Language

“Principle of Least Surprise”

“Duck Typing”

Biggest Goal

“Make Programming Fun”

a = [1, 2, 3, 4, "fish", "stix", 7]
puts a[0], a[-1], a[4..-1].join(' '), a[8]

a = [1, 2, 3, 4, "fish", "stix", 7]
puts a[0], a[-1], a[4..-1].join(' '), a[8]

 1
 7
 fish stix 7
 nil

Flexible Containers

Flexible Array Handling
(nils, negative indexing)

Powerful String Handling

Ruby is Glue

Because, who wants to write
this in C:

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes.

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes. Force
the incoming text to have unix
line endings

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes. Force
the incoming text to have unix
line endings, then write it to a
file.

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes. Force
the incoming text to have unix
line endings, then write it to a
file. If there are any problems,
make sure you close the port
properly

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes. Force
the incoming text to have unix
line endings, then write it to a
file. If there are any problems,
make sure you close the port
properly and make sure you
close that file handle too.

Because, who wants to write
this in C: Open a TCP/IP socket
and read 50,000 bytes. Force
the incoming text to have unix
line endings, then write it to a
file. If there are any problems,
make sure you close the port
properly and make sure you
close that file handle too. Also,
watch for memory leaks.

This is What Ruby is For

File.open("log.txt",'w') {|f| f <<
TCPSocket.new("192.1.168.1",3000).recv(50000).gsub(/\r\n/,”\n”)}

File.open("log.txt",'w') do |f|
 f << TCPSocket.new("192.1.168.1",3000)
 .recv(50_000)
 .gsub(/\r\n/,”\n”)
end

Make You Want to Cry?

One More Awesome Thing

Everything in Ruby is Dynamic

Want to print ints as Roman
Numerals?

Just change FixedNum's .to_s
method

How about creating functions
from text files?

class_eval do
 Dir['scripts/*.meh'].each do |s|
 define_method("run_#{s}")
{ eval(s) }
 end
end

In Ruby, Line Between
Data and Code

Blurred

Which Leads Us To

Self

Pure Object Oriented

Prototype

With “Slots”

Slots can be

data

methods

parent

Start by Cloning

Change As Needed

No Classes or Types

Inheritance by Parent Slots

Undefined Slots

Search up Through Each Parent

Until Match

Very Flexible

Can Set Slot As Data

Then Signal a Slot to Run

Another Unique Aspect

Graphical and Text Interfaces

Interchangeable

Can Execute Directly From
Diagrams

Invented JIT Compilation

Later Forked the Become Java

MANY Languages Run on JVM

Clojure

(Think LISP on JVM)

(+ 1 1)

(+ (* m x) b)

(class (/ 1 3))

(class (/ 1 3))
clojure.lang.Ratio

recursion!
(defn count [v] (if (empty? v) 0

(inc (count(rest v)))))

infinite sequences!
(repeat “hi”)

(take 3 (repeat “hi”))

Whoa!
Look at that again.

(take 3 (repeat “hi”))

Lazy Evaluation!

Pop quiz!

(defn f [n] (apply *
(take n (iterate inc 1))))

what does this do?

(defn f [n] (apply *
(take n (iterate inc 1))))

it computes n!

if that doesn't feel foreign yet

Prolog

not imperative

(it's not a recipe)

it's declarative

(declares facts and constraints)

likes (bryan, skating).
likes (kevin, skating).
likes (kevin, ruby).
likes (mark, ruby).
likes (mark, lua).
likes (dean, tcl).

hangout(X,Y) :- \+(X = Y), likes(X,Z),
likes(Y,Z).

likes (bryan, skating).
likes (kevin, skating).
likes (kevin, ruby).
likes (mark, ruby).
likes (mark, lua).
likes (dean, tcl).

hangout(X,Y) :- \+(X = Y), likes(X,Z),
likes(Y,Z).

?- likes(bryan, skating).
yes
?- hangout(bryan, kevin).
yes
?- hangout(bryan, mark).
no

add some more rules:

category (language, ruby).
category (language, lua).
category (language, tcl).
category (sport, skating).

likes_category(X,Y) :- likes(X,Z),
category(Y,Z).
(like an inner join in SQL)

?- likes_category(What,
language).
What = kevin ;
What = mark ;
What = dean ;

pretty crazy huh?

What about a language that is
MEANT TO CRASH!?

Erlang

“Let it Crash”

Hot-Swap Code

built-in message-passing &
monitoring processes

loop() ->
 process_flag(trap_exit, true),
 receive
 new ->
 register(process,
spawn_link(fun action:loop/0)),
 loop();
 {'EXIT', From, Reason} ->
 self() ! new,
 loop()
 end.

I haven't even talked about

I haven't even talked aboutI haven't even talked about

I haven't even talked aboutI haven't even talked about

LISP

Scratch
Digital Mars' D

JavaScript

Io

Haskell

DylanPython

Lua

Go

whew

Clearly

There are MANY

Fascinating Languages

And There is a LOT to LEARN

<3> So Get Learning! </3>

</Language Geek=“2.0”>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176

