

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

“Fibonaiku”

Fibonacci Haiku

Test 1
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Test
Code 1
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Test
Code
Debug 2
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Test
Code
Debug
Refactor 3
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Test
Code
Debug
Refactor
The Cycle Repeats 5
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle 8
System Tests Make Development More Predictable

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable 13

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable

Answers

Why
System Testing?

Why
System Testing?

What Is
System Testing?

What Is
our product supposed

to do?

example

It Should

Measure
Temperature

It Should

Output
Temp
Once

Per
Second

It Should

Return Version
On Command

System Testing

NOT

Unit Testing

Ignore

When We

Ignore

We Can

Focus

On Features

We Know

When Features Are
Complete

We Know

That Features Still
Work

We Know

static inline uint32 ConvertAdcCountsToPicovolts(uint32 counts)
{
 // ADC bit weight at 10-bit resolution with 3.0V reference = 2.9296875
mV/LSB
 uint32 picovoltsPerAdcCount = 2929688;

 // Shift decimal point by 6 places to preserve accuracy in fixed-point math
 return counts * picovoltsPerAdcCount;
}

static inline uint16 ConvertPicovoltsToMillivolts(uint32 picovolts)
{
 const uint32 halfMillivoltInPicovolts = 500000;
 const uint32 picovoltsPerMillivolt = 1000000;

 // Add 0.5 mV to result so that truncation yields properly rounded result
 picovolts += halfMillivoltInPicovolts;

 // Divide appropriately to convert to millivolts
 return (uint16)(picovolts / picovoltsPerMillivolt);
}

and

Work Together

We Even Know

Repeatability

Reliability

More Data == Good

Automate

How Often

How Often

Obviously

We Should Make

Do The Work

But, What About

To Test

We Need To

We Need To
Drive Inputs

We Need To
Drive Inputs

Measure Outputs

These Signals Could Be

“Hardware In the Loop”

Now We Have

But We Need

Specify Tests

Language?

It Should Be

Easy to write

Simple to install

Low Cost,
Preferably Free

Any scripting language
should do the trick

Maybe

Maybe

Maybe even

we chose

why?

intuitive

example

Send Serial Command

“version?”

5 times

5.times do
 send_serial “version?”
end

Maybe

Get Response?

text = serial_readline

Getting it Isn't
Enough?

Check The Format

Regular Expressions

Version

v1.0.542

v1.0.542

v1.0.542

v1.0.542

assert_match
 /v1\.\d\.\d+/,
 text

assert_match
 /v1\.\d\.\d+/,
 text

 v1.0.542

assert_match
 /v1\.\d\.\d+/,
 text

 v1.0.542

assert_match
 /v1\.\d\.\d+/,
 text

 v1.0.542

What If

v1.45.886

assert_match
 /v1\.\d\.\d+/,
 text

 v1.45.886

v1.2.999665533

assert_match
 /v1\.\d\.\d+/,
 text

 v1.2.999665533

test?

5.times do
 send_serial “version?”
 text = serial_readline
 assert_match
 /v1\.\d\.\d+/,
 text
end

5.times do
 send_serial “version?”
 text = serial_readline
 assert_match
 /v1\.\d\.\d+/,
 serial_readline
end

send_serial... really?

method

driver

Test Framework

Systir

System Testing In Ruby

not

System Testing Of Ruby

System Testing In Ruby

What Do Test
Frameworks Do?

Manages Test Suite

instead of

rake test:run:verify_usart_temp
rake test:run:verify_usart_1per_sec
rake test:run:verify_correct_temp
rake test:run:verify_version

write

rake test:system

What else?

We Can Write Tests

Domain Specific
Language

instead of

readval = “”
port.open(“com3”) do |p|
 begin
 while !port.eol
 readval << port.in_char
 end
 rescue
 flunk “error during read”
 end
end
assert readval =~ /\d+\.\d{2}/

write

verify_serial /\d+\.\d{2}/

or

verify_serial_format

What About The
Interface Box?

.dll's, .so's, .lib's

We could write our
ruby interface

manually

or

SWIG

Which Takes

Libraries In

Wrappers Out

Which is Way Cool

But Not What This
Presentation is About

What This
Presentation is About

System Testing

So

Let's Write One

First Feature:

Temperature

Will be Sent

Formatted

A Number under 1000

and

Exactly 1 Digit after
the Decimal Point

Followed by a Space
and then a 'C'

So First?

We need to get Data

temp = serial_readline

then, check the format

Regular Expression

Number < 1000
//

Number < 1000
/\d+/

/\d\d\d/

Number < 1000
/\d{1,3}/

decimal pt and 1 digit
/\d{1,3}/

decimal pt and 1 digit
/\d{1,3}\.\d/

a space, then a C
/\d{1,3}\.\d/

a space, then a C
/\d{1,3}\.\d\sC/

Assert that this Matches

temp = serial_readline
assert_match
 /\d{1,3}\.\d\sC/,
 temp

temp = serial_readline
assert_match
 /\d{1,3}\.\d\sC/,
 temp,
 “Can't You Try Harder?”

Does It Work?

Second Feature:

Temperature

streamed

once per second

within 100 msec

we already can read
the temperature

but 1 temp per second?

Time

Time.now

Time.now
float value in seconds

start_time = Time.now

then get another
temperature line

text = serial_readline

Then grab endtime

stop_time = Time.now

make sure the timing
was within spec

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1

assert_in_delta
 1.0,
 (stop_time-start_time),

0.1,
 “You Fool! Time Wrong”

is once enough?

text = serial_readline
5.times do
 start_time = Time.now
 text = serial_readline
 stop_time = Time.now
 assert_in_delta
 1.0,
 (stop_time-start_time),

 0.1,
 “Sorry, Out Of Time”
end

Does It Work?

Let's Fix It

Did We Fix It?

One More Feature:

Temperature

Should Be Within

2 degrees C

Of Temperature Input

So We Need

Temperature Sensors
Output Voltages

ADC only Care about
Voltages

So,

We Use

To Output

And Pretend It's

So, Grab Our Wrapper

(which isn't what this
presentation is about)

Figure Out

How

Set Voltage Outputs

@minilab.write_analog
 pin,
 voltage

pin == whichever we
choose

0 ≤ voltage ≤ 3

add a method to our
driver

def set_temp_voltage(voltage)
 @minilab.write_analog
 TEMP_PIN, voltage
end

what about

0 ≤ voltage ≤ 3

def set_temp_voltage(voltage)
 raise “Idiot! Invalid Voltage”
 unless ((voltage >= 0)
 && (voltage <= 3))
 @minilab.write_analog
 TEMP_PIN, voltage
end

and settle time?

maybe 100 msec?

def set_temp_voltage(voltage)
 raise “Idiot! Invalid Voltage”
 unless ((voltage >= 0)
 && (voltage <= 3))
 @minilab.write_analog
 TEMP_PIN, voltage
 sleep 0.1
end

So
That's Peachy

But

Didn't We Want

Temperature

Another Driver Method

def set_temp_in_deg_C(temp)
 voltage =
 calc_volt_from_temp(temp)
 set_temp_voltage(voltage)
end

calc_volt_from_temp?

its “just math”

moving on...

can now use

set_temp_in_deg_C

To Set Temp

And

We Can Read Temp

Using serial_readline

As Text

As Text

Convert To Number

temp = text.to_f

problem?

88.2 C

88.2 C
trailing text is ignored!

 So We're Ducky

set_temp_in_C(10.0)
text = serial_readline
temp = text.to_f

set_temp_in_C(10.0)
temp = serial_readline.to_f

set_temp_in_C(10.0)
temp = serial_readline.to_f
assert_in_delta
 10.0,
 temp,
 2.0,
 “Hey, it's not 10 degrees!”

should check more
than one temp

we could

set_temp_in_C(25.0)
temp = serial_readline.to_f
assert_in_delta
 25.0,
 temp,
 2.0,
 “It's not 25 degrees.”

set_temp_in_C(35.0)
temp = serial_readline.to_f
assert_in_delta
 35.0,
 temp,
 2.0,
 “It's not 35 degrees!”

set_temp_in_C(40.0)
temp = serial_readline.to_f
assert_in_delta
 40.0,
 temp,
 2.0,
 “It's not 40.0 either!”

Silly?

Loop

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
 set_temp_in_C(setpt)
 temp = serial_readline.to_f
 assert_in_delta
 setpt,
 temp,
 2.0,
 “Temp is Definitely Wrong”
end

What About Settle
Time?

Insert Delay

And

Flush Serial Port!

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
 set_temp_in_C(setpt)
 sleep 1.0
 serial_flush
 temp = serial_readline.to_f
 assert_in_delta
 setpt, temp, 2.0,
 “That Temp Just Ain't Right”
end

Does It Work?

So We've Covered

Three Features

Are We Done?

Larger Systems

Potential Problems

Interdependencies

Commands May Break
Other Commands

Only The First Request
Might Work

The System May Lock
Up After Two Minutes

Or After 127
Commands

We Can't Predict All
Problems

Is There Anything We
Can Do?

Maybe

Run Tests For A Block
Of Time

Like
For

Four
Hours

In Random Order

Run It
Every Night

Eventually Issues Fall
Out

So We Extend Systir

Mixtir

Mixed Testing In Ruby

Differences

Tests Run Multiple Times

Tests Randomly Ordered

Suite Run For
Predetermined Time

Tests Don't Start With
A “Clean Slate”

Also

For Repeatability

Random Seed

Entered Manually

Rerunning Sequence

Ideally

Keep Tests Small

Instead Of

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
 set_temp_in_C(setpt)
 sleep 1.0
 serial_flush
 temp = serial_readline.to_f
 assert_in_delta
 setpt, temp, 2.0,
 “I'm Such A Failure!”
end

Just Include

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
 setpt = 10.0 + rand(30)
 set_temp_in_C(setpt)
 sleep 1.0
 serial_flush
 temp = serial_readline.to_f
 assert_in_delta
 setpt, temp, 2.0,
 “It's Scalding/Freezing!”

Instead Of

text = serial_readline
5.times do
 start_time = Time.now
 text = serial_readline
 stop_time = Time.now
 assert_in_delta
 1.0,
 (stop_time-start_time),

 0.1,
 “Yikes! The Time Was Wrong”
end

Just Include

text = serial_readline
5.times do
 start_time = Time.now
 text = serial_readline
 stop_time = Time.now
 assert_in_delta
 1.0,
 (stop_time-start_time),

 0.1,
 “Time Out Of Spec”
end

Does It Accomplish
Anything?

We'll Use A Known
Random Seed

Otherwise We Could
Be Waiting A While

Does It Work?

So What Went Wrong?

Check Against Spec

Fix Test Or Code

Retry With Seed

Does It Work?

So

We've Caught A
Couple Of Bugs

We've Also Prevented
Future Bugs

Obviously

If You're Doing Agile

This Fits

But

System Testing

Also Useful

For All Embedded
Software Developers

So That's It.

362 Slides

6 System Tests

Maybe Even

A New Language

In Less Than 1 Hour

Questions?

This Presentation is Licensed
Under a Creative Commons 3.0
Attribution, Share-Alike License.

(that means you can use all or part of this for
whatever you want, as long as you (1) give Mark
VanderVoord credit and (2) release your derived

works under a similar license.)

http://www.creativecommons.org/

Images By (thanks!):

Turd – Bart Rox
Matrix Screens - “Scumfrog”
Scopes (3) – Mikael Altemark
Interface Box – Windell Oskay
Wrap - “XCtnx”
Moon - “Kevin”

Clock – Christina Castro
Mac Mini – Richard Thomas
Pearl - “Blue Heron Beauty”
Belt - “Everchanging Girl”
Wood Stove – Bob Travis
Glue – Jenny “mennyj”
Pencil - Balakov

Thermometer – Marek Papala
Version – Travis Forden
Ruby - “Afternoon Sunlight”
Statistics Graph – P. Neff
Manual Testing – Tim Conkery
UUT – Deborah Schultz
Duck – “LavenderLady”

Python – Ian Chien
HIL – Eduardo Guerrero
Traffic Lights (2) - “flrnt”
Peach – Rick Harris
Library - “Library Mistress”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362

