
  

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

“Fibonaiku”



  

Fibonacci     Haiku



  

Test  1
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Test
Code  1
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Test
Code
Debug  2
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Test
Code
Debug
Refactor   3
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Test
Code
Debug
Refactor
The Cycle Repeats   5
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle   8
System Tests Make Development More Predictable



  

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable 13



  

Test
Code
Debug
Refactor
The Cycle Repeats
Hardware Is Not An Obstacle
System Tests Make Development More Predictable



  

Answers



  

Why
System Testing?



  

Why
System Testing?



  

What Is
System Testing?



  

What Is
our product supposed 

to do?



  

example



  

It Should



  

Measure 
Temperature



  

It Should



  

Output
Temp
Once

Per
Second



  

It Should



  

Return Version
On Command



  

System Testing



  

NOT



  

Unit Testing



  

Ignore



  



  

When We



  

Ignore



  



  

We Can



  

Focus



  

On Features



  

We Know



  

When Features Are 
Complete



  

We Know



  

That Features Still 
Work



  

We Know



  

static inline uint32 ConvertAdcCountsToPicovolts(uint32 counts)
{
  // ADC bit weight at 10-bit resolution with 3.0V reference = 2.9296875 
mV/LSB
  uint32 picovoltsPerAdcCount = 2929688;

  // Shift decimal point by 6 places to preserve accuracy in fixed-point math
  return counts * picovoltsPerAdcCount;
}

static inline uint16 ConvertPicovoltsToMillivolts(uint32 picovolts)
{
  const uint32 halfMillivoltInPicovolts = 500000;
  const uint32 picovoltsPerMillivolt = 1000000;
    
  // Add 0.5 mV to result so that truncation yields properly rounded result
  picovolts += halfMillivoltInPicovolts;

  // Divide appropriately to convert to millivolts
  return (uint16)(picovolts / picovoltsPerMillivolt);
}



  

and



  



  

Work Together



  

We Even Know



  

Repeatability



  

Reliability



  



  

More Data == Good



  

Automate



  

How Often



  



  

How Often



  



  

Obviously



  

We Should Make



  



  

Do The Work



  

But, What About



  



  

To Test



  



  

We Need To



  

We Need To
Drive Inputs



  

We Need To
Drive Inputs

Measure Outputs



  

These Signals Could Be



  



  



  



  

“Hardware In the Loop”



  



  

Now We Have



  



  



  



  

But We Need



  

Specify Tests



  

Language?



  

It Should Be



  

Easy to write



  

Simple to install



  

Low Cost, 
Preferably Free



  

Any scripting language 
should do the trick



  

Maybe



  



  

Maybe



  



  

Maybe even



  



  



  

we chose



  



  

why?



  

intuitive



  

example



  

Send Serial Command



  

“version?”



  

5 times



  

5.times do
    send_serial “version?”
end



  

Maybe



  

Get Response?



  

text = serial_readline



  

Getting it Isn't 
Enough?



  

Check The Format



  

Regular Expressions



  

Version



  

v1.0.542



  

v1.0.542



  

v1.0.542



  

v1.0.542



  

assert_match
   /v1\.\d\.\d+/,
   text



  

assert_match
   /v1\.\d\.\d+/,
   text

   v1.0.542



  

assert_match
   /v1\.\d\.\d+/,
   text

   v1.0.542



  

assert_match
   /v1\.\d\.\d+/,
   text

   v1.0.542



  

What If



  

v1.45.886



  

assert_match
   /v1\.\d\.\d+/,
   text

   v1.45.886



  

v1.2.999665533



  

assert_match
   /v1\.\d\.\d+/,
   text

   v1.2.999665533



  

test?



  

5.times do
    send_serial “version?”
    text = serial_readline
    assert_match
        /v1\.\d\.\d+/,
        text
end



  

5.times do
    send_serial “version?”
    text = serial_readline
    assert_match
        /v1\.\d\.\d+/,
        serial_readline
end



  

send_serial... really?



  

method



  

driver



  

Test Framework



  

Systir



  

System Testing In Ruby



  

not



  

System Testing Of Ruby



  

System Testing In Ruby



  

What Do Test 
Frameworks Do?



  

Manages Test Suite



  

instead of



  

rake test:run:verify_usart_temp
rake test:run:verify_usart_1per_sec
rake test:run:verify_correct_temp
rake test:run:verify_version



  

write



  

rake test:system



  

What else?



  

We Can Write Tests



  

Domain Specific 
Language



  

instead of



  

readval = “”
port.open(“com3”) do |p|
   begin
      while !port.eol
         readval << port.in_char
      end
   rescue
      flunk “error during read”
   end
end
assert readval =~ /\d+\.\d{2}/



  

write



  

verify_serial /\d+\.\d{2}/



  

or



  

verify_serial_format



  

What About The 
Interface Box?



  



  



  



  



  

.dll's, .so's, .lib's 



  

We could write our 
ruby interface



  

manually



  

or



  

SWIG



  

Which Takes



  

Libraries In



  

Wrappers Out



  

Which is Way Cool



  

But Not What This 
Presentation is About



  

What This 
Presentation is About



  

System Testing



  

So



  

Let's Write One



  

First Feature:



  

Temperature



  

Will be Sent



  

Formatted



  

A Number under 1000



  

and



  

Exactly 1 Digit after 
the Decimal Point



  

Followed by a Space 
and then a 'C'



  

So First?



  

We need to get Data



  

temp = serial_readline



  

then, check the format



  

Regular Expression



  

Number < 1000
//



  

Number < 1000
/\d+/

/\d\d\d/



  

Number < 1000
/\d{1,3}/



  

decimal pt and 1 digit
/\d{1,3}/



  

decimal pt and 1 digit
/\d{1,3}\.\d/



  

a space, then a C
/\d{1,3}\.\d/



  

a space, then a C
/\d{1,3}\.\d\sC/



  

Assert that this Matches



  

temp = serial_readline
assert_match
    /\d{1,3}\.\d\sC/,
    temp



  

temp = serial_readline
assert_match
    /\d{1,3}\.\d\sC/,
    temp,
    “Can't You Try Harder?”



  

Does It Work?



  



  

Second Feature:



  

Temperature



  

streamed



  

once per second



  

within 100 msec



  

we already can read 
the temperature



  

but 1 temp per second?



  

Time



  

Time.now



  

Time.now
float value in seconds



  

start_time = Time.now



  

then get another 
temperature line



  

text = serial_readline



  

Then grab endtime



  

stop_time = Time.now



  

make sure the timing 
was within spec



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1



  

assert_in_delta
    1.0, 
    (stop_time-start_time),

0.1,
    “You Fool! Time Wrong”



  

is once enough?



  

text = serial_readline
5.times do
   start_time = Time.now
   text = serial_readline
   stop_time = Time.now
   assert_in_delta
      1.0, 
      (stop_time-start_time),

 0.1,
      “Sorry, Out Of Time”
end



  

Does It Work?



  



  

Let's Fix It



  

Did We Fix It?



  



  

One More Feature:



  

Temperature



  

Should Be Within



  

2 degrees C



  

Of Temperature Input



  

So We Need



  



  

Temperature Sensors 
Output Voltages



  

ADC only Care about 
Voltages



  

So,



  

We Use



  



  

To Output



  



  

And Pretend It's



  



  

So, Grab Our Wrapper



  

(which isn't what this 
presentation is about)



  

Figure Out



  

How



  

Set Voltage Outputs



  

@minilab.write_analog
    pin,
    voltage



  

pin == whichever we 
choose



  

0 ≤ voltage ≤ 3



  

add a method to our 
driver



  

def set_temp_voltage(voltage)
    @minilab.write_analog
        TEMP_PIN, voltage
end



  

what about 



  

0 ≤ voltage ≤ 3



  

def set_temp_voltage(voltage)
    raise “Idiot! Invalid Voltage”
        unless ((voltage >= 0)
             &&  (voltage <= 3))
    @minilab.write_analog
        TEMP_PIN, voltage
end



  

and settle time?



  

maybe 100 msec?



  

def set_temp_voltage(voltage)
    raise “Idiot! Invalid Voltage”
        unless ((voltage >= 0)
             &&  (voltage <= 3))
    @minilab.write_analog
        TEMP_PIN, voltage
    sleep 0.1
end



  

So 
That's Peachy



  

But



  

Didn't We Want



  

Temperature



  

Another Driver Method



  

def set_temp_in_deg_C(temp)
   voltage =
      calc_volt_from_temp(temp)
   set_temp_voltage(voltage)
end



  

calc_volt_from_temp?



  

its “just math”



  

moving on...



  

can now use



  

set_temp_in_deg_C



  

To Set Temp



  

And



  

We Can Read Temp



  

Using serial_readline



  

As Text



  

As Text



  

Convert To Number



  

temp = text.to_f



  

problem?



  

88.2 C



  

88.2 C
trailing text is ignored!



  So We're Ducky



  

set_temp_in_C(10.0)
text = serial_readline
temp = text.to_f



  

set_temp_in_C(10.0)
temp = serial_readline.to_f



  

set_temp_in_C(10.0)
temp = serial_readline.to_f
assert_in_delta
   10.0,
   temp,
   2.0,
   “Hey, it's not 10 degrees!”



  

should check more 
than one temp



  

we could



  

set_temp_in_C(25.0)
temp = serial_readline.to_f
assert_in_delta
   25.0,
   temp,
   2.0,
   “It's not 25 degrees.”



  

set_temp_in_C(35.0)
temp = serial_readline.to_f
assert_in_delta
   35.0,
   temp,
   2.0,
   “It's not 35 degrees!”



  

set_temp_in_C(40.0)
temp = serial_readline.to_f
assert_in_delta
   40.0,
   temp,
   2.0,
   “It's not 40.0 either!”



  

Silly?



  

Loop



  

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
   set_temp_in_C(setpt)
   temp = serial_readline.to_f
   assert_in_delta
      setpt,
      temp,
      2.0,
      “Temp is Definitely Wrong”
end



  

What About Settle 
Time?



  

Insert Delay



  

And



  

Flush Serial Port!



  

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
   set_temp_in_C(setpt)
   sleep 1.0
   serial_flush
   temp = serial_readline.to_f
   assert_in_delta
      setpt, temp, 2.0,
      “That Temp Just Ain't Right”
end



  

Does It Work?



  



  

So We've Covered



  

Three Features



  

Are We Done?



  

Larger Systems



  

Potential Problems



  

Interdependencies



  

Commands May Break 
Other Commands



  

Only The First Request 
Might Work



  

The System May Lock 
Up After Two Minutes



  

Or After 127 
Commands



  

We Can't Predict All 
Problems



  

Is There Anything We 
Can Do?



  

Maybe



  

Run Tests For A Block 
Of Time



  

Like
For

Four
Hours



  

In Random Order



  

Run It 
Every Night



  

Eventually Issues Fall 
Out



  

So We Extend Systir



  

Mixtir



  

Mixed Testing In Ruby



  

Differences



  

Tests Run Multiple Times



  

Tests Randomly Ordered



  

Suite Run For 
Predetermined Time



  

Tests Don't Start With 
A “Clean Slate”



  

Also



  

For Repeatability



  

Random Seed



  

Entered Manually



  

Rerunning Sequence



  

Ideally



  

Keep Tests Small



  

Instead Of 



  

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
   set_temp_in_C(setpt)
   sleep 1.0
   serial_flush
   temp = serial_readline.to_f
   assert_in_delta
      setpt, temp, 2.0,
      “I'm Such A Failure!”
end



  

Just Include



  

setpts = [10.0, 25.0, 35.0, 40.0]
setpts.each do |setpt|
   setpt = 10.0 + rand(30)
   set_temp_in_C(setpt)
   sleep 1.0
   serial_flush
   temp = serial_readline.to_f
   assert_in_delta
      setpt, temp, 2.0,
      “It's Scalding/Freezing!”



  

Instead Of



  

text = serial_readline
5.times do
   start_time = Time.now
   text = serial_readline
   stop_time = Time.now
   assert_in_delta
      1.0, 
      (stop_time-start_time),

 0.1,
      “Yikes! The Time Was Wrong”
end



  

Just Include



  

text = serial_readline
5.times do
   start_time = Time.now
   text = serial_readline
   stop_time = Time.now
   assert_in_delta
      1.0, 
      (stop_time-start_time),

 0.1,
      “Time Out Of Spec”
end



  

Does It Accomplish 
Anything?



  

We'll Use A Known 
Random Seed



  

Otherwise We Could 
Be Waiting A While



  

Does It Work?



  



  

So What Went Wrong?



  

Check Against Spec



  

Fix Test Or Code



  

Retry With Seed



  

Does It Work?



  



  

So



  

We've Caught A 
Couple Of Bugs



  

We've Also Prevented 
Future Bugs



  

Obviously



  

If You're Doing Agile



  

This Fits



  

But



  

System Testing



  

Also Useful



  

For All Embedded 
Software Developers



  

So That's It.



  

362 Slides



  

6 System Tests



  

Maybe Even



  

A New Language



  

In Less Than 1 Hour



  

Questions?



  

This Presentation is Licensed 
Under a Creative Commons 3.0 
Attribution, Share-Alike License.

(that means you can use all or part of this for 
whatever you want, as long as you (1) give Mark 
VanderVoord credit and (2) release your derived 

works under a similar license.)

http://www.creativecommons.org/
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